

ATAR Chemistry 3+4 Organic Molecules Test

TOTAL MARKS = 53 DO NOT MARK THIS PAPER

YOU MUST SHOW ALL HYDROGEN ATOMS IN YOUR STRUCTURAL DIAGRAMS

Multiple choice 10 marks

1. Consider the following five (5) organic compounds.

(i)	(ii)	(iii)	(iv)	(v)
H—C—C—H H H	H—C—COH	H—C—CH	$\begin{array}{c} H \\ \downarrow \\ C \\ \downarrow \\ H \end{array}$	н н н—с—с—он н н
CH₃CH₃	CH₃COOH	CH₃CHO	CH ₃ CONH ₂	CH₃CH₂OH

Which of the following lists contain compounds that **all** have the ability to form hydrogen bonds?

- (a) all of (i), (ii), (iii), (iv) and (v)
- (b) (ii), (iii), and (iv) only
- (c) (i), (ii), (iii) and (v) only
- (d) (ii), (iv) and (v) only
- 2. The partially completed equations below show the various chemical reactions involved in the synthesis of ethyl ethanoate.

Equation 1:
$$CH_2CH_2 + A \stackrel{\mathbf{D}}{\rightleftharpoons} CH_3CH_2OH$$

Equation 2:
$$3 \text{ CH}_3 \text{CH}_2 \text{OH} + \textbf{B} \text{ Cr}_2 \text{O}_7^{2-} + 16 \text{ H}^+ \rightarrow 3 \textbf{C} + 4 \text{ Cr}^{3+} + 11 \text{ H}_2 \text{O}$$

Equation 3:
$$\mathbf{C} + \mathrm{CH_3CH_2OH} \stackrel{\mathbf{D}}{\rightleftharpoons} \mathrm{CH_3COOCH_2CH_3} + \mathbf{A}$$

Which of the following correctly identifies the unknowns A, B, C & D?

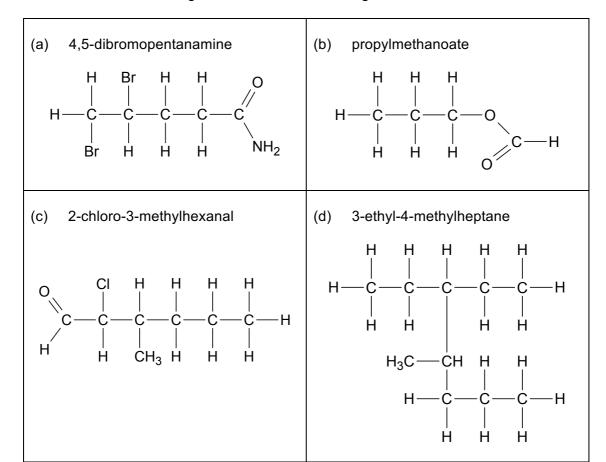
	Α	В	С	D
(a)	H ₂ O	2	CH₃COOH	H⁺
(b)	H_2O	1	CH₃COOH	catalyst
(c)	H_2O	2	CH₃CHO	H⁺
(d)	$H^{\scriptscriptstyle{+}}$	4	CH₃CHO	H_2O

	(a) (b) (c) (d)	Propanoic acid Ethyl methanoate Methyl methanoate Methyl ethanoate				
4.	i.	—соон		ii.	O CH ₃ CH ₂ CCH ₂ CH	3
	iii.	CH ₃ CH ₂ COO)	iv.	CH₃CH₂CHO	
	Which one of the following lists places the compounds in their correct class?					
		i.	ii		iii	iv
	(a) (b) (c) (d)	Ester Carboxylic acid Carboxylic acid Aldehyde	Aldehyde Ketone Ester Ketone		Ketone Ester Ketone Carboxylic acid	Carboxylic acid Aldehyde Aldehyde Ester

An organic substance has an empirical formula of $C_3H_6O_2$. Which of the following is NOT a possible identity of the substance?

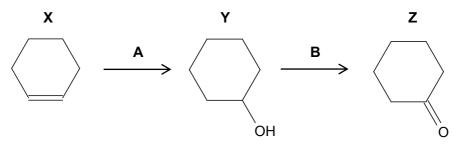
3.

Questions 5 and 6 relate to the four isomers of C₅H₁₁OH shown below.


Α В Н Н -H H-C. Н OH Η -C ОН H H Η H-С—Н C -H Ĥ H H С D Н Н -H-HH-Н Н OHC -OH Н Ĥ H Η C-Ĥ Н Н

- 5. Which of the isomers would **not** react when mixed with acidified sodium permanganate solution?
 - (a) A
 - (b) B
 - (c) C
 - (d) D
- 6. Which of the following is **not** a possible organic product resulting from oxidation of the isomers above?
 - (a) 3-methylbutanoic acid
 - (b) 2-methylbutanoic acid
 - (c) 3-methylbutanone
 - (d) 2-methylbutanone

7. Consider the organic molecule shown below.

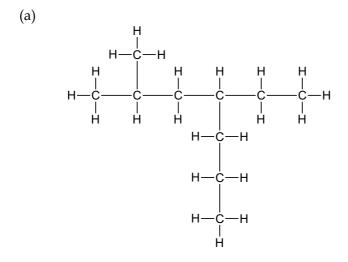

Which of the following reactions is **most likely** to produce this compound?

8. Which of the following molecules has **not** been given the correct IUPAC name?

Questions 9 and 10 relate to the following information.

An overview of a particular reaction sequence is shown below.

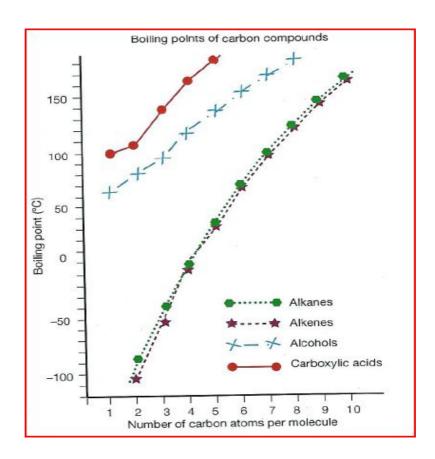
9. What functional group is present in each of the substances?


	X	Y	Z
(a)	alkene	alcohol	aldehyde
(b)	alkene	aldehyde	carboxylic acid
(c)	alkene	alcohol	ketone
(d)	alkane	ketone	ester

10. What reagents were **most likely** added at steps A and B?

	A	В
(a)	$O_2(g)$	$H_2(g)$
(b)	$H_2O(l)$	$O_2(g)$
(c)	NaOH(aq)	H⁺/MnO₄⁻(aq)
(d)	$H_2O(l)$	H ⁺ /Cr ₂ O ₇ ²⁻ (aq)

Short Answers 41 marks


11. Give the IUPAC name of the following structures:

(c)
$$H_{3}C-CH_{2}CH_{2}C \\ O-CH_{2}CH_{3}$$

$$\begin{array}{c} H \\ H - C - H \\ H - C \\ H \end{array}$$

12.	Give the <u>full structural formula</u> for the following organic chemicals:				
	(a) 5-ethylheptan-3-one				
	(b)	2-chloro-5-methyl-octan-1-amine			
(c) 2-ethylhexyl- ethanoate(d) 4,4-diethyloctanal					
	(e)	trans-	hept-3-ene		
	(f)	1,1-dichloro-cis-but-2-ene [6 marks]			
13. For each of the situations described below, determine whether or no reaction would be expected and, if so:				dox	
		(i)	Write a balanced redox reaction showing the changes that and show the states in the final equation;	take place	
		(ii)	Give an observation for the reactions:		
	(a)	Acidified potassium permanganate solution is added to pentan-2-ol.			
	(b)	Limite	ed dilute acidified potassium dichromate is added to propar	n-1-ol.	
				[8 marks]	
14.	extract	nut oil contains an ester which gives the oil its distinctive odour. The ester was sted and a series of experiments were carried out to determine the formula of ster, which was known to contain only carbon, hydrogen and oxygen.			
A 1.68	0 g sam	ple was	s burned in excess oxygen and 4.100 g of carbon dioxide was	s produced.	
A sepa	ırate 1.9	90 g sa	mple was burned in excess oxygen and 1.990 g of water was	s produced.	
(a)	Calcul	ate the	empirical formula of the ester in the coconut oil.	(8 marks)	
	A further sample weighing 0.8100 g was vaporised and the gas produced was found to occupy a volume of 226.0 mL at 140.0 °C and 85.20 kPa.				
(b)	From t	his info	ormation, calculate the molecular formula of the ester.	(4 marks)	
(c)	This same ester can also be synthesised in the laboratory by reacting pentan-1-ol and a carboxylic acid, using sulfuric acid as a catalyst.				
Using	this info	ormatic	on, draw the structural formula of the ester present in cocon	ut oil. (1 mark)	

a) Looking at the above graph explain in general terms why the boiling point for all the functional groups increases with increasing number of carbon atoms per molecule.

[2 marks]

b) From the graph it is clear that alkanes and alkenes generally have much lower boiling points than alcohols and carboxylic acids. Account for this in terms of forces these different functional groups have.

[4 marks]

c) In terms of solubility explain which groups are more likely to be soluble in a polar solvent and explain briefly?

[2 marks]

c) Within the homologous series of alcohols account for any changes of solubility in a polar solvent, say for example pentan-1-ol?

[2 marks]